

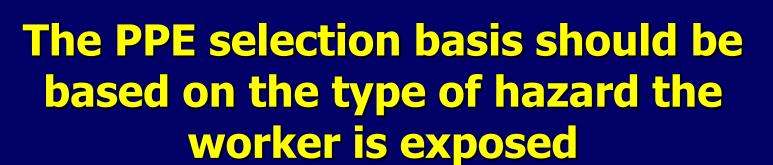
Personal Protective Equipment (P.P.E) for Chemical Handling – Hand Protection

Conducted by: K.K.Chen

Definition of P.P.E

Means any <u>equipment</u> which is intended to be <u>worn or held</u> by a <u>person</u> at work and which <u>protects</u> him <u>against</u> one or more <u>risks</u> to his health or safety and any additional accessory designed to meet that objective.

- Personal Protective Equipment (PPE)
 must be provided when necessary by
 reason of hazards encountered that are
 capable of causing injury or impairment
- Use of PPE does not eliminate the hazard, so if the equipment fails then exposure occurs


Definition of Hazards:

Any condition or act with the potential to cause harm — injury, ill health, damage to property or environment & etc.

Potential Route of Entry

- Inhalation
- Skin Contact
- Ingestion
- Eyes
- Hearing

MECHANICAL

 Puncture, Cut, Abrasive object (mechanical), Moving machinery

- CHEMICAL

■ Corrosive, Irritant, Carcinogen, Poison

- PHYSICAL

 Noise, Radiation, Extreme temperature, Vibration, Electrical

- **BIOLOGICAL**

■ Bacterial, Parasitic, Virus

EHS Solution & Marketing Sdn Bhd

Types of Personal Protective Equipment (P.P.E)

- Head Protection
- Eye & Face Protection
- Hand & Arm Protection
- Respiratory Protection
- Hearing Protection
- Foot Protection
- Body Protection

Hand Protection

Hand Hazards

Can largely be group into 5 types:

Chemical

Mechanical

Biological

Thermal

Electrical

Types of Gloves

- Chemical Resistance
- General Purpose
- Special Application

Consideration when selecting gloves:

- Application of glove
- Material
- Length
- Size
- Cuff Types
- Dexterity & Comfort
- Meet approved Standards

Chemical Hazards

Dermatitis

Solvent

Alkaline

Chemical Resistant Gloves

Natural Rubber

Neoprene

Nitrile

PVA

Butyl

PVC

VITON

Chemical Gloves Selection Chart

Permeation/Degradation Resistance Guide for Ansell Gloves

16. Benzene, Benzol

Benzotrichloride

The first square in each column for each glove type is color coded. This is an easy-to-read indication of how we rate this type of glove in relation to its applicability for each chemical listed. The color represents an overall rating for both degradation and permeation. The letter in each	*			=			4						*				4					
square is for Degradation alone GREEN: The glove is very well suited for application with that chamical.	LAMINATE FILM			NITRILE			UNSUPPORTED NEOPRENE		SUPPORTED POLYVINYL ALCOHOL			POLYVINYL CHLORIDE (Viryl)			NATURAL Rubber Canners			NEOPRENE/ NATURAL RUBBER BLEND				
YELLOW: The glove is suit- able for that application under		BARRIER	₹		SOL-VEX			29-865			PVA		SNORKEL			AND HANDLERS*			CHEMI-PRO*			
RED: Avoid use of the glove with this chemical.	Degradation Rating	Permeation: Breakthrough	Permeation: Rate	Degradation Rating	Permeation: Breakthrough	Permeation: Rate	Degradation Rating	Permeation: Breakthrough	Permeation: Rate	Degradation Rating	Permeation: Breakthrough	Permeation: Rate	Degradation Rating	Permeation: Breakthrough	Permeation: Rate	Degradation Rating	Permeation: Breakthrough	Permeation: Rate	Degradation Rating	Permeation: Bre akthrough	Permeation: Rate	
Acetaldehyde	0 22	380	E	D &		-	E	10	F	NR.		-	NR		-	E	7	F	E	10	F	
2. Acetic Acid		150	-	G	270	-	Е	60	-	NR	-	-	F	180	-	Е	110	-	Е	260	-	
3. Acetone	•	>480	E	NR	-	-	Е	10	F	P	-	-	NR	-	-	Е	10	F	G	10	G	
4. Acetonitrile	•	>480	E	F	30	F	Ε	20	G		150	G	NR	-	-	Ε	4	VG	Е	10	VG	
5. Acrylic Acid		-	-	G	120	-	Ε	390	-	NR	-	-	NR	-	-	Ε	80	-	Е	65	-	
6. Acrylonitrile	Е	>480	E	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
7. Allyl Alcohol	A	>480	Ε	F	140	F	Ε	140	VG	P	-	-	Р	60	G	Е	>10	VG	Е	20	VG	
8. Ammonia Gas	•	19	E	•	>480	-	•	>480	-	-	-	-		6	VG	-	-	-	•	27	VG	
9. Ammonium Fluoride, 40%	-	-	-	Е	>360	-	Ε	>480	-	NR	-	-	Ε	>360	-	Ε	>360	-	Ε	>360	-	
10. Ammonium Hydroxide	Е	30	-	Е	>360	-	Ε	250	-	NR	-	-	Ε	240	-	Ε	90	-	Ε	240	-	
11. Arryl Acetate	•	>480	E	Ε	60	G	NR	-	-	G	>360	E	P		-	NR	-	-	P	-	-	
12. Amyl Alcohol	-	-	-	E	30	Ε	Ε	290	VG	G	180	G	G	12	Ε	Ε	25	VG	Е	45	VG	
13. Aniline	•	>480	Ε	NR	-	-	Ε	100	Р	F	>360	Ε	F	180	VG	Ε	25	VG	Ε	50	G	
14. Aqua Regia	-	-	-	F	>360	-	G	>480	-	NR	-	-	G	120	-	NR	-	-	G	180	-	
15. Benzaldehyde	•	>480	E	NR	-	-	NR	-	-	G	>360	Ε	NR	-	-	G	10	VG	G	25	F	

http://www.ansell-edmont.com/download/Ansell_7thEditionChemicalResistanceGuide.pdf

>360

How to Read the Charts

Three categories of data are represented for each Ansell product and corresponding chemical: 1) overall degradation resistance rating; 2) permeation breakthrough time, and 3) permeation rate.

Standards for Color-Coding

A glove-chemical combination receives GREEN if either set of the following conditions is met:

- The degradation rating is Excellent or Good
- The permeation breakthrough time is 30 minutes or longer
- The permeation rate is Excellent, Very Good, or Good.

OR

- The permeation rate is not specified
- The permeation breakthrough time is 240 minutes or longer
- The degradation rating is Excellent, Very Good, or Good

A glove-chemical combination receives RED if: the degradation rating is Poor or Not Recommended, regardless of the permeation rating.

All other glove-chemical combinations receive YELLOW . In other words, any glove-chemical combination not meeting either set of conditions required for Green, and not having a Red degradation rating of either Poor or Not Recommended, receives a YELLOW . rating.

Key to Permeation Rate						
	Simply Stated,					
	Drops/hr Through a Glove					
	(eyedropper-size drops)					
E – Excellent; permeation rate of less than 0.9 μg/cm²/min.	0 to 1/2 drop					
VG – Very Good; permeation rate of less than 9 μg/cm²/min.	1 to 5 drops					
G – Good; permeation rate of less than 90 μg/cm²/min.	6 to 50 drops					
F – Fair; permeation rate of less than 900 μg/cm²/min.	51 to 500 drops					
P – Poor; permeation rate of less than 9000 µg/cm²/min.	501 to 5000 drops					
NR – Not Recommended; permeation rate greater						
than 9000 μg/cm²/min.	5001 drops up					

Note: The current revision to the ASTM standard permeation test calls for permeation to be reported in micrograms of chemical permeated per square centimeter of material exposed per minute of exposure, "µg/cm²/min."

Key to Permeation Breakthrough

> Greater than (time) < Less than (time)

Key to Degradation Ratings

E-Excellent; fluid has very little degrading effect.

G-Good; fluid has minor degrading effect.

F-Fair; fluid has moderate degrading effect.

P-Poor; fluid has pronounced degrading effect.

NR-Fluid was not tested against this material.

NOTE: Any test samples rated P (poor) or NR (not recommended) in degradation testing were not tested for permeation resistance. A dash (-) appears in those cases.

Specific Gloves Used for Testing

•	0	_
	Degradation	Permeation
Nitrile	Sol-Vex* 37-145	Sol-Vex* 37-165
	(11 mil/0.28 mm)	(22 mil/0.54 mm)
Neoprene Unsupported	29-865	29-865
	(18 mil/0.46 mm)	(18 mil/0.46 mm)
Polyvinyl Alcohol Supported	PVA**	PVA ^{ne}
Polyvinyl Chloride Supported	Snorke1*	Monkey Grip™
Natural Rubber Latex	Canners 392	Canners 392
	(19 mil/0.48 mm)	(19 mil/0.48 mm)
Neoprene/Latex Blend	Chemi-Pro 224	Chemi-Pro 224
	(27 mil/0.67 mm)	(27 mil/0.67 mm)
Laminated LCP™ Film	Barrier 2-100	Barrier 2-100
	(2.5 mil/0.06 mm)	(2.5 mil/0.06 mm)

Single palm thickness is listed in both mil and metric millimeter (mm) for Unsupported Gloves. Supported Gloves are specified by glove weight, not thickness.

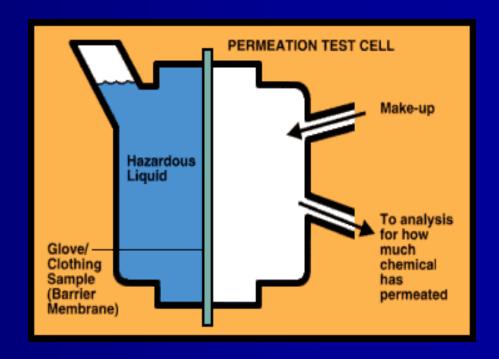
Link to Chemical Resistance Gloves Selection:

https://www.ansellpro.com/download/Ansell_7thEditionChemicalResistanceGuide.pdf

file:///C:/Users/User/Downloads/2640.pdf

Care & Maintenance of Gloves

- Wash gloves daily after contact with Chemicals
- Store at ambient temperature away from light, moisture, solvent and chemicals.
- Issue glove on a personal basis
- Inspect for cuts, abrasions, cracks, contamination etc.



When to change a Gloves?

- Torn
- Degraded
- Dirty
- Permeation

Any Question

Thank You

EHS SOLUTION & MARKETING SDN BHD

Lot 901, 9th Floor, Block A4 Leisure Commerce Square 46150 Petaling Jaya. Selangor Darul Ehsan

Tel: 03-7877 1678, 7877 2678

Fax: 03-7877 4677

Email: ehs@gmail.com, kkchen.ehs@gmail.com

K.K.CHEN: 016-6338822